If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-100x^2+300x=0
a = -100; b = 300; c = 0;
Δ = b2-4ac
Δ = 3002-4·(-100)·0
Δ = 90000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{90000}=300$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-300}{2*-100}=\frac{-600}{-200} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+300}{2*-100}=\frac{0}{-200} =0 $
| 75+(4x+-25)=75 | | 6(x+4=20 | | k^2-14k+45=0 | | 2x-5+3x=2+3x+9 | | 14y-16=130 | | 0.5x-10=100 | | c+(2c-6)=180 | | 5x+38°=2x+62° | | x+100-x+80=180 | | c+2=8. | | 52-3x=31 | | 7x-2-3x=10+2x+8 | | 97.2=b/9 | | 5m+10=3m+15 | | y=1.023(0.98)2 | | 18+3m=90 | | 3x−5x+4=12−6 | | 1.4=c/4 | | 7m+22=14-4m | | 7x+9x-50=75-9x | | -(2k+2)-1=-k-k-3 | | 149.5+15x=149.5+15x | | 6p+6=24 | | 40x+(1.5x×20)=1300 | | 11b=-24-b^2 | | x+0.03x=200 | | 12+5w-5w=15 | | 9m+10=3m+22 | | x+x+100-x=180 | | 1/4x+6=-8 | | 1/5y=1/20 | | -6x+9=-2x+9-4x |